

Kenton C. Ward, CFM Surveyor of Hamilton County Phone (317) 776-8495 Fax (317) 776-9628 Suite 188 One Hamilton County Square Noblesville, Indiana 46060-2230

June 8, 2012

To: Hamilton County Drainage Board

Re: Cool Creek Drain, 186th Street Reconstruction

Attached is the petition and plans for the 186th Street Reconstruction of the Cool Creek Drain. The reconstruction is being proposed by the City of Westfield. This proposed drain reconstruction is located in Washington Township. The proposal is to reconstruct the original 1880 tile beyond the new Right of Way for 186th Street so future reconstruction does not have to work within the right of way.

This line will consist of the following: the new pipe will replace the old tile starting at Str. MH-1, per the Banning Engineering plans for the Cool Creek Reconstruction, having project number 06038 and date of 06-02-06. Str. MN-1 is set a Sta. 0+77 per the 1880 legal description for the Wheeler and Beals Drain, John Wheeler Arm. The new pipe will extend south following the location of the original tile 38 feet to the location of a new structure as shown on sheet 5 for 186th Street Extension Plan for Grand Park, by HWC Engineering, dated 10-25-11.

The footages below describe the drain:

42" RCP

38 feet

The total length of new tile shall be 38 feet. The 38 feet of the original drain between Sta. 0+77 and Sta. 1+15 per the 1,880 legal description for the Wheeler and Beals Drain, John Wheeler Arm, shall be vacated. This proposal will add 0 feet to the drains total length.

The petitioner was not required to post a Performance Bond, as this is a City of Westfield funded project.

The cost of the relocation is to be paid by the City of Westfield as part of the 186th Street project.

The easement will remain the same statutory 75 feet per half from the centerline of the tile within the 186^{th} Street Right-of-Way and on parcel 08-05-36-00-004.000, owned by D & W Farms, Inc. Therefore, additional easement shall not be required from D & W Farms.

I recommend that the Board set a hearing for this proposed reconstruction for August 27, 2012.

Sincerely

Kenton C. Ward, CFM Hamilton County Surveyor

KCW/pll

Gasb 34 Asset Price & Drain Length Log

Drain-Improvement: Cool Creek (Wheeler & Beals): 186th St. Reconstruction

				1	If App	olicable		
Drain Type:	Size:	Length	Length (DB Query)	Length Reconcile	Price:	Cost:		
RCP	42	38	38	0	\$52.65 lf	\$2,000.70		
	Sum:		38			\$2,000.70		
Final Report:								
Comments:								
Comments.								
				A				
			20					

HAMILTON COUNTY DRAINAGE BOARD NOBLESVILLE, INDIANA

FEB 2 4 2012

	Cool Creek)
IN RE:	on County, Indiana	

OFFICE OF HAMILTON COUNTY SURVEYOR

	PETITION FOR RELOCATION AND RECO	<u>ONSTRUCTION</u>
	The City of Westfield	(hereinafter Petitioner"),
hereby peti	ions the Hamilton County Drainage Board for au	thority to relocate and improve a
section of the	e Cool Creek	Drain, and in support of
said petition	advises the Board that:	
1. Peti	ioner owns real estate through which a portion o	f the
Dra	n runs.	
2. Peti	ioner plans to develop its real estate with roads,	ouildings, utilities, storm drains,
sani	ary sewers and other structures.	
3. Peti	ioner's proposed development of its real estate w	vill require relocation and
reco	nstruction of a portion of the Coo	Creek Drain, as
spec	ifically shown on engineering plans and specific	ations filed with the Hamilton
Cou	nty Surveyor.	
4. The	work necessary for the proposed relocation and I	reconstruction will be undertaken at
the	ole expense of the Petitioner and such work will	result in substantial improvement to
the	Cool Creek Drain, wit	hout cost to other property owners
on t	ne watershed of the Cool Creek	Drain.
WHE	REFORE, Petitioner requests that an Order issue	d from the Hamilton County
Drainage B	oard authorizing relocation and reconstruction of	the
Drain, in co	nformance with applicable law and plans and spe	ecifications on file with the Hamilton
County Sur	Signed Printed	VanTrees

STATE OF INDIANA)

SS:

DRAINAGE BOARD

NOBLESVILLE, INDIANA

IN THE MATTER OF THE

RECONSTRUCTION OF THE

Cool Creek Drain, 186th Street Reconstruction

FINDINGS AND ORDER FOR RECONSTRUCTION

The matter of the proposed Reconstruction of the *Cool Creek Drain, 186th Street Reconstruction* came before the Hamilton County

Drainage Board for hearing *on August 27, 2012*, on the Reconstruction

Report consisting of the report and the Schedule of Damages and

Assessments. The Board also received and considered the written objection of an owner of certain lands affected by the proposed Reconstruction, said owner being:

Evidence was heard on the Reconstruction Report and on the aforementioned objections.

The Board, having considered the evidence and objections, and, upon motion duly made, seconded and unanimously carried, did find and determine that the costs, damages and expenses of the proposed Reconstruction will be less than the benefits accruing to the owners of all land benefited by the Reconstruction.

The Board having considered the evidence and objections, upon motion duly made, seconded and unanimously carried, did adopt the Schedule of Assessments as proposed, subject to amendment after inspection of the subject drain as it relates to the lands of any owners which may have been erroneously included or omitted from the Schedule of Assessments.

The Board further finds that it has jurisdiction of these proceedings and that all required notices have been duly given or published as required by law.

Wherefore, it is ORDERED, that the proposed Reconstruction of the $Cool\ Creek\ Drain$, $186^{th}\ Street\ Reconstruction$ be and is hereby declared established.

Thereafter, the Board made inspection for the purpose of determining whether or not the lands of any owners had been erroneously included or excluded from the Schedule of Assessments. The Board finds on the basis of the reports and findings at this hearing as follows:

tamilton county prainage board

PRESIDENT

Member

Member

ATTEST

BEFORE THE HAMILTON COUNTY DRAINAGE BOARD IN THE MATTER OF

Cool Creek Drain, 186th Street Reconstruction

NOTICE

То	Whom	It	May	Concern	and:	

Notice is hereby given of the hearing of the Hamilton County Drainage Board concerning the reconstruction of the Cool Creek Drain, 186th Street Reconstruction on August 27, 2012 at 9:05 A.M. in Commissioners Court, Hamilton County Judicial Center, One Hamilton County Square, Noblesville, Indiana. Construction and maintenance reports of the Surveyor and the Schedule of Assessments proposed by the Drainage Board have been filed and are available for public inspection in the office of the Hamilton County Surveyor.

Hamilton County Drainage Board

Attest:Lynette Mosbaugh

ONE TIME ONLY

STATE	OF	INDIANA)	SS	BEFORE	THE	HAMILTON
)				
COUNTY	OF	HAMILTON)		DRAINA(GE BO	DARD

IN THE MATTER OF Cool Creek Drain, 186th Street Reconstruction

NOTICE

Notice is hereby given that the Hamilton County Drainage Board at its regular meeting August 27, 2012 adopted the reconstruction report of the Surveyor and the Amended Schedule of damages and assessments including annual assessment for periodic maintenance, finding that the costs, damages and expense of the proposed improvement would be less than the benefits which will result to the owner of lands benefited thereby.

The Board issued an order declaring the proposed improvement established. Such findings and order were marked filed and are available for inspection in the Office of the Hamilton County Surveyor.

If judicial review of the findings and order of the Board is not requested pursuant to Article VIII of the 1965 Indiana Drainage Code as amended within twenty (20) days from the date of publication of this notice, the findings and order shall become conclusive.

HAMILTON COUNTY DRAINAGE BOARD

BY: Steven C. Dillinger PRESIDENT

ATTEST: Lynette Mosbaugh
SECRETARY

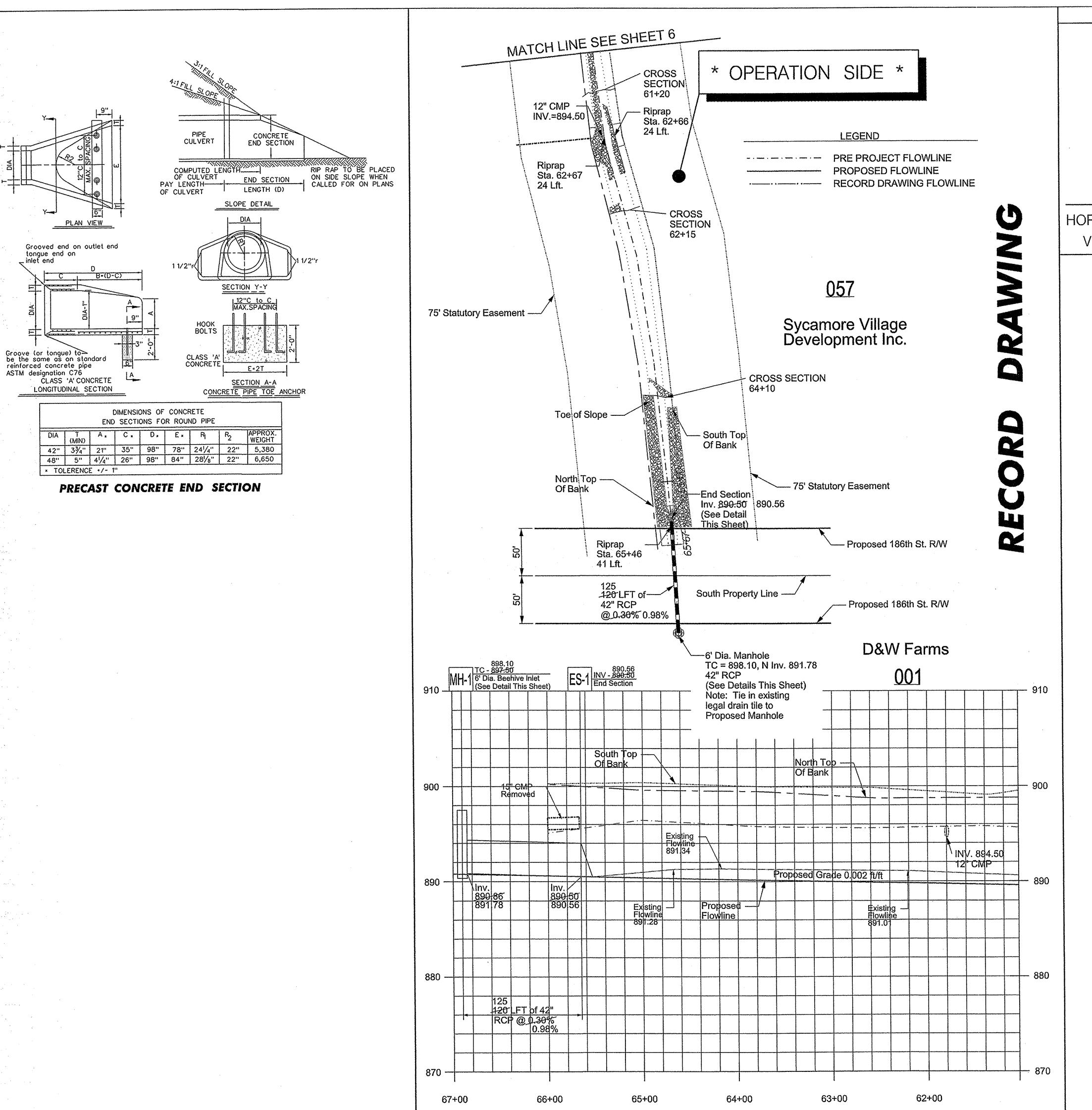
Kenton C. Ward, CFM Surveyor of Hamilton County Phone (317) 776-8495 Tax (317) 776-9628 Suite 188 One Hamilton County Square Noblesville, Indiana 46060-2230

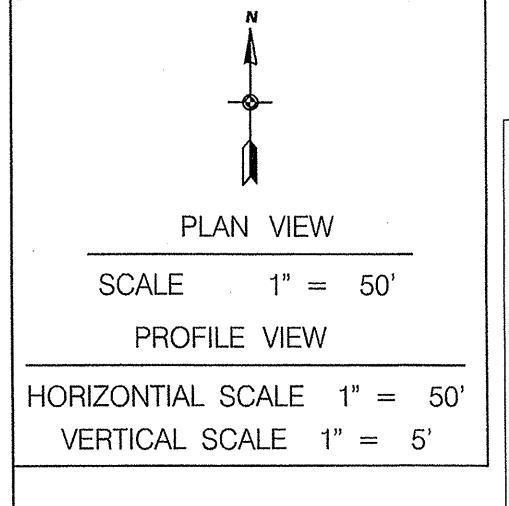
To: Hamilton County Drainage Board

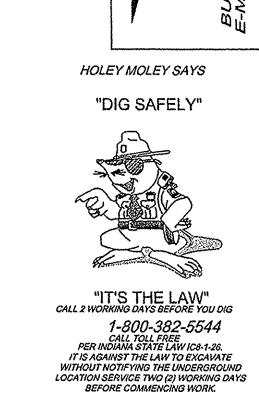
May 17, 2016

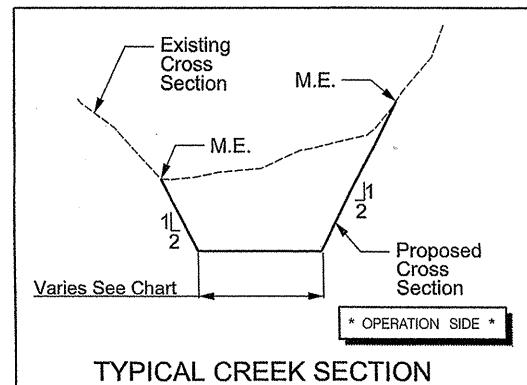
Re: Cool Creek Drain - 186th Street Reconstruction

Attached are plans, and other information for the 186th Street Reconstruction. An inspection of the drainage facilities for this section has been made and the facilities were found to be complete and acceptable.

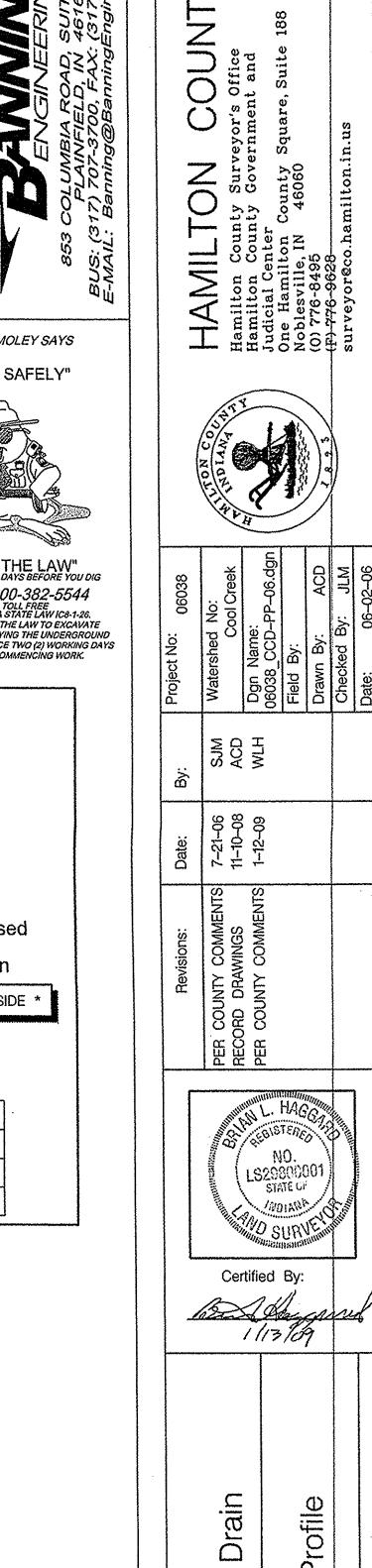

During construction, changes were made to the drain, which will alter the plans submitted with my report for this drain-dated June 8, 2012. The report was approved by the Board at the hearing held August 27, 2012. (See Drainage Board Minutes Book 14, Pages 238-240) The changes are as follows: the 38' of 42" RCP was lengthened to 42 feet. The length of the drain due to the changes described above is now 42 feet. The project removed the existing drain (Wheeler and Beals) from Sta. 31+02 to 31+44. (Note, this was incorrectly stated in the original report as Sta. 0+77 to Sta. 1+19) Therefore, the project add 0 footage to the drain's overall length.


It should be noted that the 2007 Cool Creek Reconstruction replaced 48 feet of open ditch and 77 feet of tile. This was done by the instillation 125 feet of 42" RCP. This project tied into this 42" at existing structure, MH 1. (See Record drawing Sheet 7 stamped by Banning Engineering on January 13, 2009.)


A non-enforcement was not requested. All work was performed within road right of way or existing regulated drain easement. Sureties were not required as this project was paid for by the City of Westfield.


I recommend the Board approve the drain's construction as complete and acceptable.

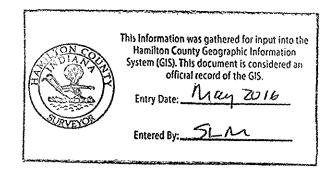
Kenton C. Ward, CFM Hamilton County Surveyor



FROM STATIONS	BOTTOM WIDTH
0+00 - 26+27	6'
26+27 - 33+89	5'
33+89 - U.S. END	4'

NO SCALE

Creek


Cool

SHEET NO.

Name:

roject

O

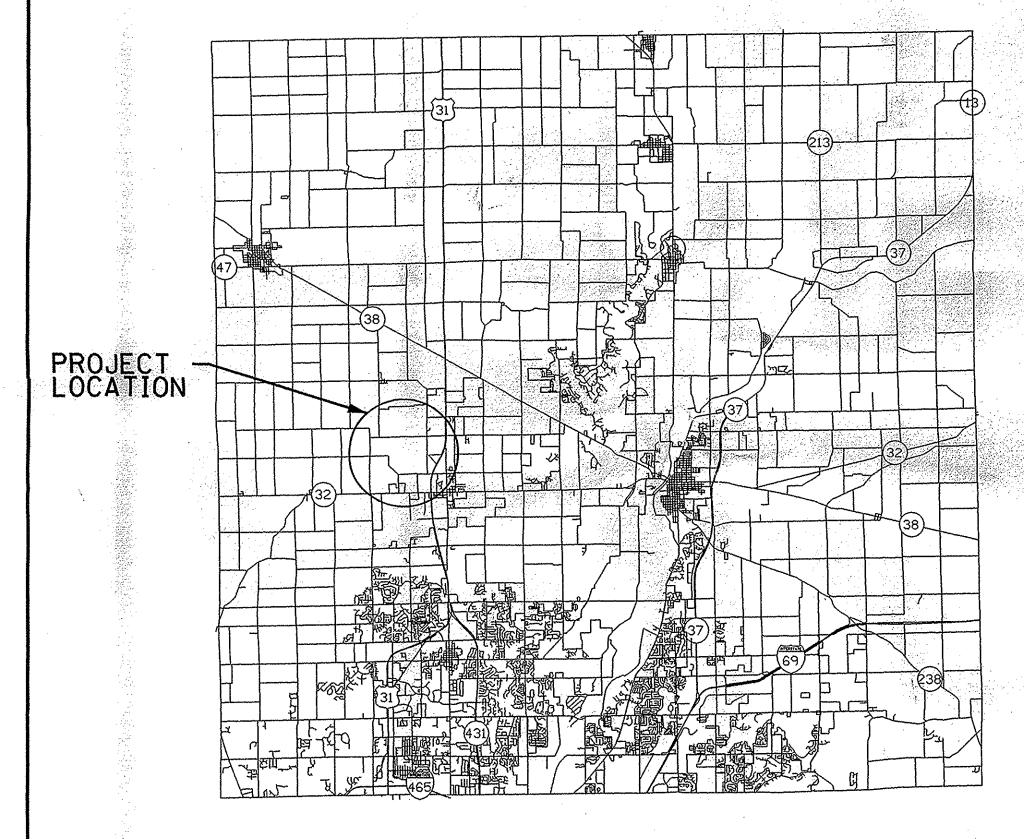
REVISIONS SHEET NO.

186th STREET EXTENSION PLANS

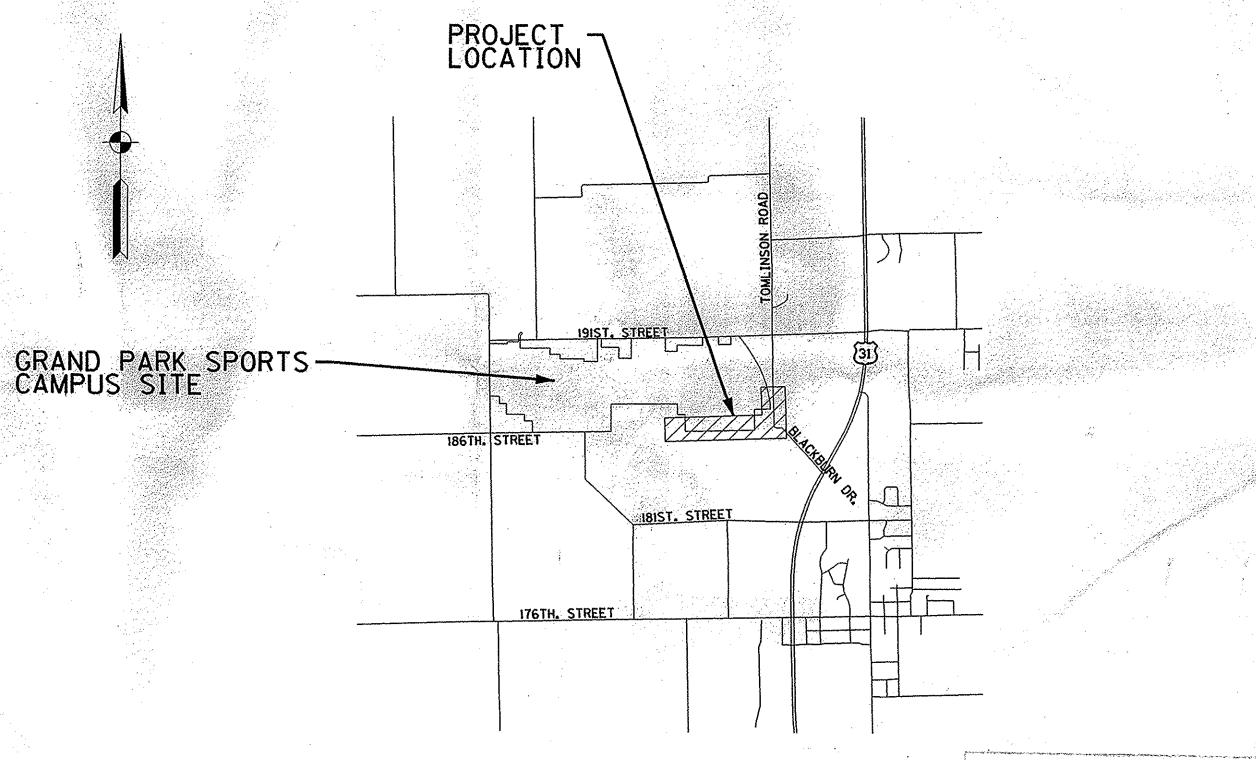
FOR

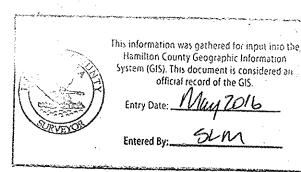
GRAND PARK

THE SPORTS CAMPUS AT WESTFIELD 777 EAST 191st STREET WESTFIELD, INDIANA 46074


PLANS PREPARED FOR:

CITY OF WESTFIELD


130 PENN STREET WESTFIELD, IN 46074 MAYOR J. ANDREW COOK


S.W. 1/4 SECTION 25 AND S.W. AND S.E. 1/4 SECTION 26, T19N, R3E, WASHINGTON TOWNSHIP, HAMILTON COUNTY

VICINITY MAP NOT TO SCALE

UTILITY CONTACTS

CITY OF WESTFIELD - PUBLIC WORKS KURT WANNINGER 2706 EAST 171ST. STREET WESTFIELD. IN 46074 (317) 804-3100

CITY OF WESTFIELD - ENGINEERING NEIL VANTREES 2706 EAST 171ST. STREET WESTFIELD, IN 46074 (317) 804-3136

CITY OF WESTFIELD - FIRE DEPARTMENT GARRY HARLING 17535 DARTOWN ROAD WESTFIELD. IN 46074 (317) 804-3307

HAMILTON COUNTY SURVERYOR'S OFFICE GREG HOYES ONE HAMILTON COUNTY SQUARE, SUITE 188 NOBLESVILLE, IN 46060 (317) 776-8495

HAMILTON COUNTY HIGHWAY DEPARTMENT DAVE LUCAS 1700 S. 10TH. STREET NOBLESVILLE, IN 46060 (317) 773-7770

COMMUNICATIONS: COMCAST CABLE MATT STRINGER 9750 EAST 150TH. STREET, SUITE 1600 NOBLESVILLE, IN 46060 (317) 774-3384

GAS: INDIANA GAS / VECTREN RESA GLOVER & CHARLOTTE MAY P.O. BOX 1700 NOBLESVILLE, IN 46061 (317) 776-5550

GAS: CITIZENS GAS OF WESTFIELD RICHARD MILLER. JR. 2150 DR. MARTIN LUTHER KING DRIVE INDIANAPOLIS, IN 46202 (317) 927-4684

GAS PIPELINES: BUCKEYE PARTNERS, L.P. MARTY WHITE 940 BUCKEYE ROAD LIMA, OHIO 45804 (419) 993-8008

CITY OF WESTFIELD - PARKS DEPARTMENT MELODY JONES 2728 EAST 171ST. STREET WESTFIELD, IN 46074 (317) 804-3184

GAS PIPELINES: INDIANA GAS / VECTREN DON PERDUE P.O. BOX 1700 NOBLESVILLE, IN 46061 (317) 776-5550

COMMUNICATIONS: AT&T STEVE ROBINSON 5858 N. COLLEGE INDIANAPOLIS, IN 46220 (317) 265-6801

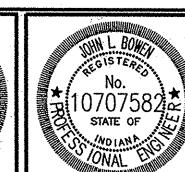
ELECTRIC: DUKE ENERGY - NOBLESVILLE OFFICE JASON KEENAN 100 SOUTH MILL CREEK ROAD NOBLESVILLE, IN 46060 (317) 776-5335

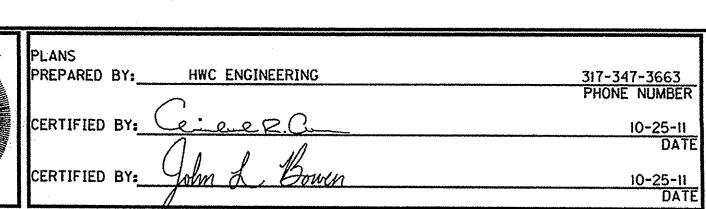
	TINDEY								
SHEET NO.	DESCRIPTION								
1	TITLE SHEET								
2	TYPICAL SECTIONS								
3	MAINTENACE OF TRAFFIC DETOUR								
4-7	PLAN & PROFILE SHEETS								
8-9	INTERSECTION DETAIL SHEETS								
10-12	EROSION CONTROL SHEETS								
 13-14	PAVEMENT MARKINGS & SIGN SHEET								
15	GUARDRAIL DETAIL SHEET								
16	APPROACH TABLE & SIGN SUMMARY TABLE								
17	UNDERDRAIN TABLE								
18	EROSION CONTROL TABLE								
19	STRUCTURE DATA TABLE								
20-34	CROSS SECTIONS								

CAUTION II

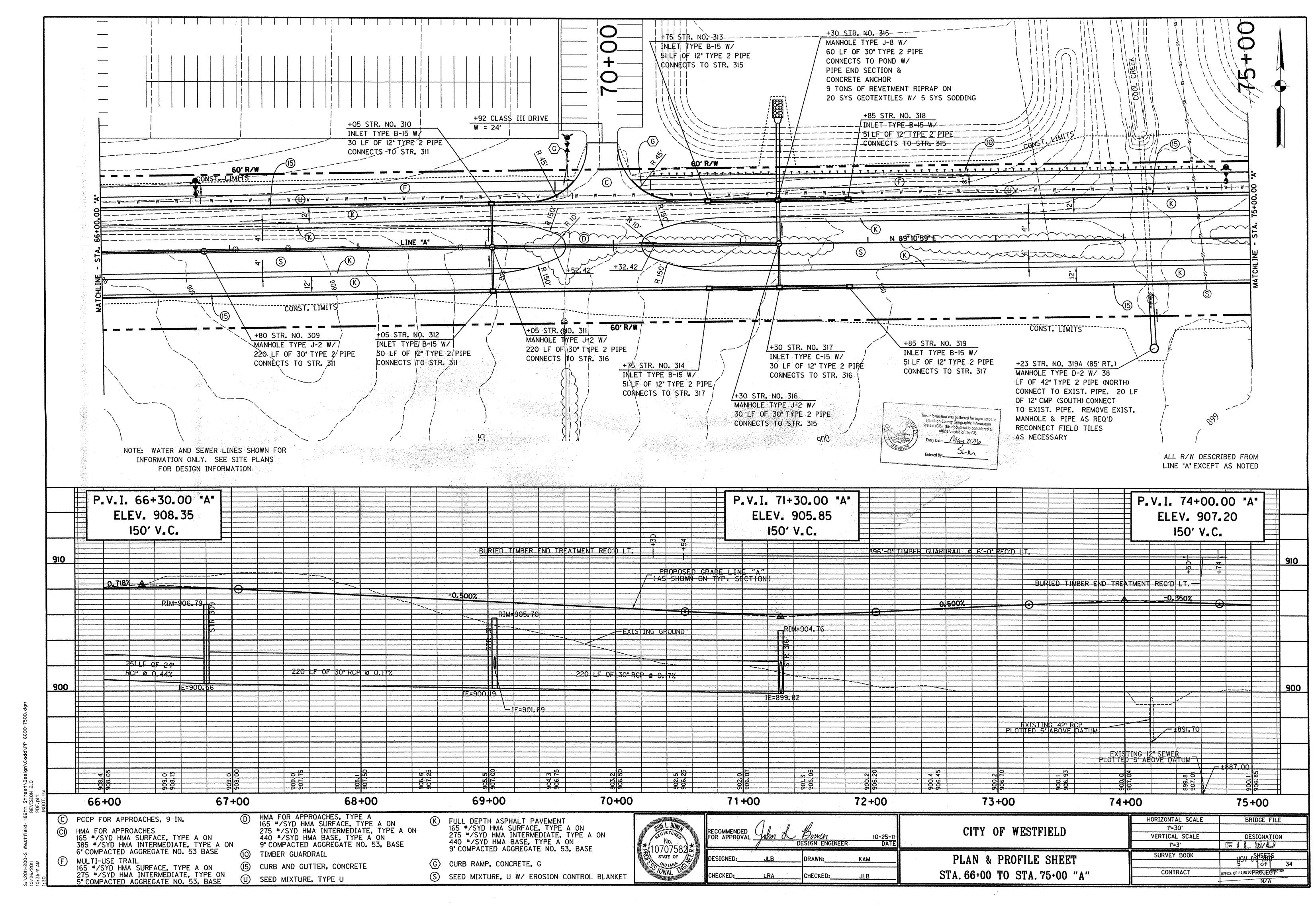
THE LOCATIONS OF ALL EXISTING UNDERGROUND UTILITIES SHOW ON THIS PLAN ARE BASED UPON ABOVE GROUND EVIDENCE (Including but not limited to, manholes, inlets, valves, and marks made upon the ground by others) AND ARE SPECULATIVE IN NATURE, THERE MAY ALSO BE OTHER EXISTING UNDERGROUND UTILITIES FOR WHICH THERE IS NO ABOVE GROUND EVIDENCE OR FOR WHICH NO ABOVE GROUND EVIDENCE WAS OBSERVED. THE EXACT LOCATIONS OF SAID EXISTING UNDERGROUND UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO ANY AND ALL CONSTRUCTION.

> 811 OR 1-800-382-5544 CALL TOLL FREE INDIANA UNDERGROUND

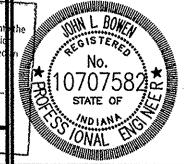

DESIGN AND CONSTRUCTION OF THIS PROJECT SHALL COMPLY WITH THE HAMILTON COUNTY SURVEYOR'S OFFICE, THE CITY OF WESTFIELD CONSTRUCTION SPECIFICATIONS AND STANDARD DETAILS, AND THE 2012 INDIANA DEPARTMENT OF TRANSPORTATION STANDARD DRAWINGS AND SPECIFICATIONS.



ENGINEERING


TERRE HAUTE - INDIANAPOLIS LAFAYETTE - NOBLESVILLE - SCOTTSBURG www.hwcengineering.com

ANCES NOV 0 9 2011 of 34 CONTRACT PROJECT


		LOCATI	ON					FL	OW LINE						TURE BACKFILI			(A)	<u> </u>		<u> </u>	·			
NUMBER	STATION	OFFSE LEFT	RIGHT	SIZE	MANHOLE, INLET, CATCH BASIN, OR SPECIALTY STRUCTURE	LENGTH	COVER	CASTING STRE	DOV AM STRE	W Z SERVICE LIFE	SITE	BACKFILL METHOD	TYPE 1	TYPE 2	,	FLOWABLE BACKFILL	FLOWABLE ACKFILL (N REMOVABLI	GEOTEXTILES REVETMENT	CONCRETE, CLASS A, FOR STRUCTURES	VIDEO INSPECTION PIPE END SECTION	GI BC SE	RATED DX END ECTION	SAFETY METAL END SECTION	CONNECT TO STR. NO.	REMARKS
	F	T		IN		FT	FTEL	EV. ELE	V. ELE	v. YR.			CYD	CYD CY	D CYD C	YD CYD	CYD	SYS TO	ON CYD	LF EA.	TYPE	SLOPE EA.	. SLOPE EA.		
		3.0 X		12		30	2.0 90	7.89 903.	89 903.	30 50	N/A 7	.0 1	11											302	
02	62+30 33	3.0	X	X 24 12		189 30		902. 97.89 903.					97											305	
		3.0 X	X	12		33	2.0 90	6.98 903. 6.98 903.	02 902.	92 50	N/A 7	.0 1	12.											304	
04	64+24 33	3.0 X		12	2 INLET C-15	30	2.0 90	6.92 902.	92 902.	66 50	N/A 7	.0 1	12 11											306 305	
)6	64+24 64+24 33		X	X 24 12	2 INLET C-15	251 30	1.3 90 2.0 90		66 900. 92 902.				115 11											309 305	
07 08		3.0 X	X	12		33	2.0 90 2.0 90	96.98 903. 96.98 903.	02 902. 02 902.				12 12											304 306	
	66+80 69+05 33	3.0 X		X 30	2 MANHOLE J-2	220 30	2.8 90	900. 96.74 902.	56 900	.19 50	N/A 7	.0 1	210											311	
11	69+05			X 30	2 MANHOLE J-2	220	2.1 90	5.70 900.	19 899.	82 50	N/A 7	.0 1	176											311 316	
	69+05 33 70+75 33	3.0 X		12	2 INLET B-15	51	2.0 90	902. 95.90 901.	74 901 . 90 901.	69 50 25 50	N/A 7	.0 1	11											311	
14 15	70+75 33 71+30 33	3.0 X	X	12 30		51 60	1.9 90	902. 95.80 899.	02 901.	87 50	N/A 7	.0 1	18 55					20 9	9					317	OUTLET TO DETENTION POND
16 17	71+30	3.0	X	X 30	2 MANHOLE J-2	30	1.5 90	4.76 899.	82 899.	75 50	N/A 7	0 1	20					20 S	•					315	
8	71+85 33	3.0 X		12	2 INLET B-15	51	2.0 90	901.90 95.90 901.9	90 901.	25 50	N/A 7	.0 1	11 19											316 315	
9 9A	74+23 85		X	12 42		51 38		05.9 902. 97.94 891.					18 44											317 EXIST (CONNECT TO EXIST 42" RCP (NORTH) AND 12" CMP (SOUTH)
21	······································	3.0 X	X	12		36 36	2.0 90)6.19 902.)6.19 901.	19 901.	72 50	N/A 7	.0 1	13 19											322 324	
22		3.0 X		24	2 MANHOLE C-8	58	2.5 90	06.14 900.	72 900	.51 50	N/A 7	0 1	40											(CONNECTS TO EXIST. MH BY OTHERS
24	76+60 33		X	X 24 12	2 INLET C-15	30 30	3.2 90	05.01 900. 06.14 901.	01 900.	83 50	N/A 7	.0 1	14											322 323	
25 26		3.0 X	×X	12		46		902. 902. 902.					17											322 324	
27 28	78+40 33 78+40	3.0 X		12 X 24	2 INLET B-15	30 175	2.0 90	903. 96.00 901.	04 902.	39 50	N/A 7	.0 1	11 93											328 323	
29	78+40 33	3.0 3.0 X	X	12	2 INLET B-15	30	2.0 90	7.04 903.	04 902.	39 50	N/A 7	.0 1	11											328	
31	80+70			12 X 18	2 MANHOLE C-2	225	2.6 90	08.64 904. 07.60 902.	52 901.	89 50	N/A 7	.0 1	11 125											331 328	
33		3.0 X	X	12	the state of the s	30 30	2.0 91	0.80 906.	80 905.	40 50	N/A 7	.0							·····					331	
34 35	83+80 83+80 33	3.0	X	X 18 12		305 30		904. 0.80 906.					160 11											331 334	
·	86+00 89+00 29	a. O. X		X 15		215	4.1 91	11.99 905.	69 905	.15 50	N/A 7	.0 1	155											334 338	
	89+00 6			15		295	1.6 91	906. 10.21 906.	43 905.	69 50	N/A 7	.0 1	103											336	
								· · · · · · · · · · · · · · · · · · ·																	
																						<u> </u>			
																									NOTES:
																									I. ALL TYPE 2 PIPE SHALL BE REINFORCED CONCRETE PIPE
																									I WEIN ONCED CONCRETE FIFE
																									2. ALL TYPE 2 MANHOLE GRATES
																									SHALL BE AS SHOWN ON CITY OF
																									WESTFIELD STANDARD DRAWING ST

REVISION 2.0
PDF.pl+

This Information was gathered for input in Hamilton County Geographic Information System (GIS). This document is consider official record of the GIS.

Entry Date: May 2016

Entered By: 6LM

ECOMMENDED OR APPROVAL	John	L DI	Bowen ESIGN ENGINEER	₹	10-25-11 DATE				
ESIGNED:	JLB		DRAWN:	КАМ					
HECKED:	LRA		CHECKED:	JLB					

CITY OF WESTFIELD

HORIZONTAL SCALE

NA

VERTICAL SCALE

NA

SURVEY BOOK

STRUCTURE DATA TABLE

CONTRACT

VERTICAL SCALE DESIGNATION

NA N/A

SURVEY BOOK SHEETS

19 of 34

CONTRACT PROJECT

N/A